
UNIT 3 
Centroids and Centers of 

Gravity 
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Centre of Gravity

It is defined as an imaginary point on which entire, length, area or volume of body is assumed to be
concentrated.
It is defined as a geometrical centre of object.

The weight of various parts of body, which
acts parallel to each other, can be replaced
by an equivalent weight. This equivalent
weight acts a point, known as centre of
gravity of the body
The resultant of the force system will
algebraic sum of all parallel forces, there
force

R = W1+W2+………+Wn

It is represented as weight of entire body.

W = R = 
The location of resultant with reference to any axis (say y – y axis) can be determined by taking
moment of all forces & by applying varignon’s theorem,
Moment of resultant of force system about any axis = Moment of individual force about the same
axis

R. = W1x1+W2x2+………+Wnxm 

we can write, 

Similarly, =

W2

W3
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CENTROID AND CENTER OF GRAVITY
UNIT III



Line Element Centroid – Basic Shape
Element name Geometrical Shape Length

Straight line L

Straight line

Circular wire r r

Semi-circular r

Quarter circular

Circular arc On Axis of 
Symmetry

Here,        

 = 
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Centroid of semi – circular arc

A semi-circular arc be uniform thin wire or a thin road, place it in such a way that y – axis is the
axis of symmetry with this symmetry we have =0.

Here

Y = 

dl = R. dθ  

Consider length of element is dl at an angle of θ as shown in fig.

= =

=

=

=

R 

dθ 

θ 

dl 

X 

Y 
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Example: 1. Determine the centroid of bar bent in to a shape as shown in figure. 

Answer:

For finding out the centroid of given bar, let’s divide the bar in to 4 – element as AB, BC, CD, DEF 

Member Length Y mm (mm2) l (mm2)
AB

= 70.71
x1 = (50/2) = 25 y1 = (50/2) 

= 25 =

BC x2 = (100/2) + 50
=100 y2 = 50

CD x3 = 50 +100
= 150

y3 = (50/2) 
+ 50 = 75

DEF
= 157.08

x4 = 50+100 + 
(2r/π)
= 181.83

y4 = r = 50

mm
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Example-2.  Calculate length of part DE such that it remains horizontal when ABCDE is hanged 
through as shown in figure. 

ANSWER :

here, we want to determine length of DC = l such that DC remains horizontal, for that centroidal
axisis passes through “A”.
Reference axis is passing through c as shown in figure.

Part Shape Length (m2)
AB Straight line

BC Semi-circular 
arc

CD Straight line

= = = 3.5 

... 15.246+3.5 = 0.5 +6.284

...  0.5 –3.5 -8.962=0

... =8.993m

B 

C D 

L 

A 

X = 3.5 m 

2 m 

G 1.5 m 
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Area(Lamina) Element Centroid– Basic Shape 

Element name Geometrical Shape Area   

Rectangle bd 

Triangle  

Circle  r r 

Semicircle r 

Quarter circle 

Circular segment  
 

On Axis of 
Symmetry 
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Centroid of a triangle area

Place one side of the triangle on any axis, say axis as shown in fig.
Consider a differential strip of width ‘dy’ at height y, by similar triangles ∆ABC & ∆CDB

=

. . .  DE = (1- b 

= (b- b)

Now, area of strip,
dA = (b- b) dy

Now, we have

= =

... A =

= )dy 

=

=

A 

B C b 

P Q 
(h-y) 

dy h 

y 
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Example-3.  Determine co-ordinates of centroid with respect to ‘o’ of the section as shown in figure.

Answer: 
Let divide the given section in to 4 (four) pare 

(1) : Rectangular (3 X 12) 
(2) : Triangle (6 x 9) 
(3) : Rectangular (3 x 1.5) 
(4) : Semi – circular (r = 1.5m) 

 mm 

mm 

Sr.
no Shape Area (m2) (m) Y(m) (m3) (m3)

1 Rectangle =36

2 Triangle =27

3 Rectangle

4 Semi-circle
= 3.53
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Example 4 A lamina of uniform thickness is hung through a weight less  hook at point B such that side 
AB remains horizontal as shown in fig. determine the length AB of the lamina. 

Answer: 

Let, length AB=L, for remains horizontal of given lamina moment of areas of lamina on either side of the 
hook must be equal.  

.. .

. . .  (  = (  (

. . . = 157.08 x 4.244

. . . L =14.14 cm
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Pappus Guldinus first theorem 

This theorem states that, “the area of surface of revolution is equal to the product of length of
generating curves & the distance travelled by the centroid of the generating curve while the surface
is being generated”.
As shown in fig. consider small element having length dl & at ‘y’ distance from  axis.
Surface area dA by revolving this element dA= 2πy.dl (complete revolution)
Now, total area,

.
.
. A =  = = 2π  

.
.
. A = 2π  

When the curve rotate by an angle ‘ ’

.
.
. A = 2π  =  

Pappus guldinus second theorem 

This the rem states that, “the volume of a body of revolution is equal to the product of the generating
area & distance travelled by the centroid of revolving area while rotating around its axis of rotation.
Consider area ‘dA’ as shown in fig. the volume generated by revolution will be

 dv= Q π Y .dA 

Now, the total volume generated by lamina,

 V=  = A 

  = 2π A  (completed revolution ) 

When the area revolves about ‘   angle volume will be

V=2π  =  

Y 

B 

l 

Y 
x 

dl 

A 

x 

C 

Y 

Y 

dA 
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Example-5. Find surface area of the glass to manufacture an electric bulb shown in fig using first 
theorem of Pappu’s Guldinus. 

Line length (mm2)

AB L1=20 200

BC L2=36 720

CD
L3=

=104
3

4020
2

x = 40 4160

DE
L4=

=94.25
4

2rx = 38.20 36000

= 34.14mm

Surface area = Lθ = 254.25 x 2 x34.14 

= 54510.99mm2 

20 20 

AXIS OF REVOLUTION 

GLASS 

ALUMINIUM HOLDER 

60 
60 

36 

96 
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1. Locate the centroid of the wire bent as shown in figure

2. Find the Centroid for the shaded area about y – axis. As shown  in the 

3. State and prove Pappus theorem

4. Locate the centroid of the shaded area shown in figure

5. Find the centroid of Quarter circle having the radius R
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.Determine the centroid of the figure

.Determine the centroid of the shaded area  as shown in figure

. Determine the centre of gravity of right solid circularcine of radius R and height h

.Determine the centre of gravity of solid cone of base Radius 'R' and height 'h'

.
Locate the centroid of the shaded area and also find the moment of inertia about horizontal

centroidal axis shown in figure. All dimensions in  mm. 
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